Part Number Hot Search : 
60U1Z 1N4731A PS224A IMP1233D XMP6A1 MX98715 DTM4459 ACT8893
Product Description
Full Text Search
 

To Download IRFB9N60APBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 SMPS MOSFET
PD - 94821
IRFB9N60APBF
HEXFET(R) Power MOSFET
Applications Switch Mode Power Supply ( SMPS ) Uninterruptable Power Supply High speed power switching Lead-Free Benefits Low Gate Charge Qg results in Simple Drive Requirement Improved Gate, Avalanche and dynamic dv/dt Ruggedness Fully Characterized Capacitance and Avalanche Voltage and Current
VDSS
600V
Rds(on) max
0.75
ID
9.2A
TO-220AB
GDS
Absolute Maximum Ratings
Parameter
ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C VGS dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torqe, 6-32 or M3 screw
Max.
9.2 5.8 37 170 1.3 30 5.0 -55 to + 150 300 (1.6mm from case ) 10 lbf*in (1.1N*m)
Units
A W W/C V V/ns C
Applicable Off Line SMPS Topologies: Active Clamped Forward Main Switch
Notes
www.irf.com
through
are on page 8
1
11/7/03
IRFB9N60APBF
Static @ TJ = 25C (unless otherwise specified)
V(BR)DSS
V(BR)DSS/TJ
RDS(on) VGS(th) IDSS IGSS
Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Parameter Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance
Min. 600 --- --- 2.0 --- --- --- --- Min. 5.5 --- --- --- --- --- --- --- --- --- --- --- --- ---
Typ. --- 0.66 --- --- --- --- --- --- Typ. --- --- --- --- 13 25 30 22 1400 180 7.1 1957 49 96
Max. Units Conditions --- V VGS = 0V, ID = 250A --- V/C Reference to 25C, ID = 1mA 0.75 VGS = 10V, ID = 5.5.A 4.0 V VDS = VGS, ID = 250A 25 VDS = 600V, VGS = 0V A 250 VDS = 480V, VGS = 0V, TJ = 125C 100 VGS = 30V nA -100 VGS = -30V Max. Units Conditions --- S VDS = 50V, ID = 5.5A 49 ID = 9.2A 13 nC VDS = 400V 20 VGS = 10V, See Fig. 6 and 13 --- VDD = 300V --- ID = 9.2A ns --- RG = 9.1 --- RD = 35.5,See Fig. 10 --- VGS = 0V --- VDS = 25V --- pF = 1.0MHz, See Fig. 5 --- VGS = 0V, VDS = 1.0V, = 1.0MHz --- VGS = 0V, VDS = 480V, = 1.0MHz --- VGS = 0V, VDS = 0V to 480V
Dynamic @ TJ = 25C (unless otherwise specified)
gfs Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss Coss Coss eff.
Avalanche Characteristics
Parameter
EAS IAR EAR Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy
Typ.
--- --- ---
Max.
290 9.2 17
Units
mJ A mJ
Thermal Resistance
Parameter
RJC RCS RJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time
Typ.
--- 0.50 ---
Max.
0.75 --- 62
Units
C/W
Diode Characteristics
Min. Typ. Max. Units IS
ISM
VSD trr Qrr ton
2
Conditions D MOSFET symbol --- --- 9.2 showing the A G integral reverse --- --- 37 S p-n junction diode. --- --- 1.5 V TJ = 25C, IS = 9.2A, VGS = 0V --- 530 800 ns TJ = 25C, IF = 9.2A --- 3.0 4.4 C di/dt = 100A/s Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRFB9N60APBF
100
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.7V TOP
100
I D , Drain-to-Source Current (A)
10
I D , Drain-to-Source Current (A)
VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.7V TOP
10
1
4.7V
20s PULSE WIDTH TJ = 25 C
1 10 100
4.7V
20s PULSE WIDTH TJ = 150 C
1 10 100
0.1 0.1
1
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
100
3.0
RDS(on) , Drain-to-Source On Resistance (Normalized)
ID = 9.2A
I D , Drain-to-Source Current (A)
2.5
10
TJ = 150 C
2.0
TJ = 25 C
1
1.5
1.0
0.5
0.1 4.0
V DS = 50V 20s PULSE WIDTH 5.0 6.0 7.0 8.0 9.0 10.0
0.0 -60 -40 -20
VGS = 10V
0 20 40 60 80 100 120 140 160
VGS , Gate-to-Source Voltage (V)
TJ , Junction Temperature ( C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance Vs. Temperature
www.irf.com
3
IRFB9N60APBF
100000
VGS , Gate-to-Source Voltage (V)
10000
V GS = 0V, f = 1MHz Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd Coss = Cds + C gd
20
ID = 9.2A
400V VDS = 480V VDS = 300V VDS = 120V
16
C, Capacitance (pF)
1000
Ciss
12
100
Coss
8
10
Crss
A
4
1 1 10 100 1000
0
FOR TEST CIRCUIT SEE FIGURE 13
0 10 20 30 40 50
V DS , Drain-to-Source Voltage (V)
QG , Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
100
1000
ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED BY RDS(on)
10
ID , Drain Current (A)
100 10us 10 100us 1ms 1 10ms
TJ = 150 C
1
TJ = 25 C
0.1 0.2
V GS = 0 V
0.5 0.7 1.0 1.2
0.1
TC = 25 C TJ = 150 C Single Pulse
10 100 1000 10000
VSD ,Source-to-Drain Voltage (V)
VDS , Drain-to-Source Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
4
www.irf.com
IRFB9N60APBF
10.0
VDS VGS
RD
8.0
ID , Drain Current (A)
RG
D.U.T.
+
-VDD
6.0
10V
Pulse Width 1 s Duty Factor 0.1 %
4.0
Fig 10a. Switching Time Test Circuit
2.0
VDS 90%
0.0
25
50
TC , Case Temperature ( C)
75
100
125
150
Fig 9. Maximum Drain Current Vs. Case Temperature
10% VGS
td(on) tr t d(off) tf
Fig 10b. Switching Time Waveforms
1
Thermal Response (Z thJC )
D = 0.50
0.20 0.1 0.10 0.05 0.02 0.01 PDM t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak T J = P DM x Z thJC + TC 0.001 0.01 0.1 1
0.01 0.00001
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFB9N60APBF
EAS , Single Pulse Avalanche Energy (mJ)
600
TOP
500
15V
BOTTOM
ID 4.1A 5.8A 9.2A
VDS
L
DRIVER
400
RG
20V
D.U.T
IAS tp
+ V - DD
300
A
0.01
200
Fig 12a. Unclamped Inductive Test Circuit
100
0
25
50
75
100
125
150
V(BR)DSS tp
Starting TJ , Junction Temperature ( C)
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
I AS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator Same Type as D.U.T.
50K
QG
12V
.2F .3F
10 V
QGS
QGD
VGS
3mA
D.U.T.
+ V - DS
VG
Charge
IG
ID
Current Sampling Resistors
Fig 13a. Basic Gate Charge Waveform
Fig 13b. Gate Charge Test Circuit
6
www.irf.com
IRFB9N60APBF
Peak Diode Recovery dv/dt Test Circuit
D.U.T
+
Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer
+ +
-
RG
* * * *
dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test
+ VDD
Driver Gate Drive P.W. Period D=
P.W. Period VGS=10V
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
VDD
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple 5%
ISD
* VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFETS
www.irf.com
7
IRFB9N60APBF
TO-220AB Package Outline
2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) 3.78 (.149) 3.54 (.139) -A6.47 (.255) 6.10 (.240) -B4.69 (.185) 4.20 (.165) 1.32 (.052) 1.22 (.048)
4 15.24 (.600) 14.84 (.584)
1.15 (.045) MIN 1 2 3
LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 21- GATE DRAIN 1- GATE 32- DRAINSOURCE 2- COLLECTOR 3- SOURCE 3- EMITTER 4 - DRAIN
LEAD ASSIGNMENTS
HEXFET
14.09 (.555) 13.47 (.530)
4- DRAIN
4.06 (.160) 3.55 (.140)
4- COLLECTOR
3X 3X 1.40 (.055) 1.15 (.045)
0.93 (.037) 0.69 (.027) M BAM
3X
0.55 (.022) 0.46 (.018)
0.36 (.014)
2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH
2.92 (.115) 2.64 (.104)
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 ASSEMBLED O N WW 19, 1997 IN THE ASSEMBLY LINE "C" INTERNATIO NAL RECTIFIER LO GO ASSEMBLY LOT CODE PART NUMBER
Note: "P" in assembly line position indicates "Lead-Free"
DATE CODE YEAR 7 = 1997 WEEK 19 LINE C
Notes: Repetitive rating; pulse width limited by max. junction temperature. ( See fig. 11 ) Starting TJ = 25C, L = 6.8mH RG = 25, IAS = 9.2A. (See Figure 12) ISD 9.2A, di/dt 50A/s, VDD V(BR)DSS, TJ 150C Pulse width 300s; duty cycle 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.11/03
8
www.irf.com
Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/


▲Up To Search▲   

 
Price & Availability of IRFB9N60APBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X